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New constraints on symmetry violation via quantum-correlated

charm systems

Toby Twigger

August 7, 2025

Abstract

The use of a multilayer perceptron neural network for the classification of CP eigenstates of D0D̄0 mesons
generated through the decay of Xc1(3872) is evaluated. The network is found to be able to classify Xc1(3872)
decays producing a π0 as a secondary decay product with high precision. The separation of γ-producing
Xc1(3872) decays from a simulated background signal is found to result in a significantly lower degree of
separation.

4



1 Introduction

In most branches of physics, theories are introduced
and adapted as experimental data confirms or inval-
idates physical consequences of the theory. For ex-
ample, Newtonian gravity was widely accepted when
published in 1687, but it failed to describe accurately
the motion of Mercury. In 1915, Einstein’s Theory of
General Relativity superseded Newtonian gravity, and
was able to predict the correct orbital motion [1].

The evolution of particle physics has followed a sim-
ilar path, with it roots said to be in the musings of
Greek philosophers Leucippus and his better known
student Democitius [2]. As technology adapts and im-
proves, it has been possible to delve further into the
inner workings of particles and atoms, and construct a
wider picture to account for new experimental results.

However, the full theory still remains hidden. De-
spite many groundbreaking theoretical proposals, and
many experimental confirmations, the Standard Model
(SM) as it stands is still incomplete. Some of the prob-
lems, amongst many, are that: it cannot be reconciled
with general relativity, does not explain or predict the
existence of dark matter and dark energy, and is un-
able to describe the abundance of matter when com-
pared to antimatter [3]. The discrepancy in the ratio of
observed matter to antimatter is one of the most puz-
zling questions posed to theoretical and experimental
physicists. There is no obvious reason for this symme-
try violation, thus it holds heavy implications for the
completeness of the SM. It is therefore highly likely
there is undiscovered physics which would illuminate
and hopefully solve this observed but unexpected vio-
lation of CP symmetry.

To narrow the search for CP violating physics, it is
essential to constrain measured parameters which dic-
tate the magnitude of the violating effects. One such
fundamental constant used for a quantifying measure-
ment of CP violation within the SM is named γ, and
is the least precisely measured CP violating phase [4].
By imposing further constraints on this constant γ, it
is hoped that indicators to new physics will become
clear, and guide the evolution of the SM towards a
more accurate and complete theory.

CP violation has been observed and measured be-
fore, but only very recently has it been seen in the
charm system [5]. The CPT theorem states that the
combined symmetries of Charge (C), Parity (P) and
Time (T) should be constant [6]. Both CP and T vi-
olation have been independently measured in the B
system through utilisation of B-meson mixing [7, 8].
However, through similar techniques in the charm sys-
tem, specifically the quantum-correlated charm system
D0D̄0, the constraints imposed on the SM phase γ will
hopefully be further increased.

Historically, these D0D̄0 systems have been pro-
duced through e+e− collisions at the ψ(3770) thresh-
old [9, 10]. However, such methods exist to create large
numbers of quantum correlated D0D̄0 systems through
decays of the exotic meson Xc1(3872) [11]. Machine
learning can be employed to aid identification of these

decays and isolate Xc1(3872) produced D0D̄0 systems
for measurement to lead to precise constraints on the
SM phase γ.

2 Theory

2.1 CPT Violation in the SM

Through attempting to find the SM mechanism by
which the observed degree of asymmetry between mat-
ter and antimatter is generated, Andrei Sakharov pub-
lished three conditions to which a system must abide
in order to produce a majority of matter particles over
antimatter particles [12, 13]. The second of these con-
ditions states that a system must violate CP-symmetry.

CP violating sources have been theorised and mea-
sured in the SM, but the combination of sources does
not account for the amount of CP violation required
to describe the observed matter and antimatter quan-
tities [14]. One of these sources, the CKM matrix, gov-
erns the strength of flavour changing weak interactions
[15]. The Wolfenstein parameterisation of the CKM
matrix (Equation 1) is a commonly used parameteri-
sation, correct to O(λ3), around the small parameter
λ ≈ 0.22, and requires four parameters: λ, ρ, η and A
[16, 17].

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



=

 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


(1)

CP violation requires η 6= 0; the constraints on ρ
and η are commonly represented in the complex plane,
where they form the apex of the unitary triangle (figure
1).

Figure 1: Standard unitary triangle representation of
the CKM matrix elements in the complex plane.

Current measurements of the angle γ place the value
at γ = 74.0+5.0

−5.8 [18]. These measurements come from
tree-level decays through B meson decays. Specifically,
the interference between the favoured b → cW and
the suppressed b → uW transitional amplitudes are
exploited [19].
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Commonly, the decays B− → D0K− and B− →
D̄0K− are used for the interference calculations.
Charged mesons are used since they are easier to iden-
tify and are not involved in B-mixing. The Feynman
diagrams for these decays are shown in figure 2 [20].

Figure 2: A Feynman diagram of the decay of a B−

meson to a D0 or D̄0.

The only contribution to CP violation, and in turn
γ, comes from the Vub element of the CKM matrix. As-
suming the D0 and D̄0 decay to a common final state
f , γ may be extracted from the amplitudes defined in
equation 2 [20]. The four strong phases present in the
decay paths may be reduced to two relative phases,
δB = δu − δc and δD = δF̄ − δf . δB may be deduced
through the yield of B+ and B−, and quantum corre-
lated charm mesons may be used to measure δD [21].

A(B− → D0K−) = Ace
iδc

A(B− → D̄0K−) = Aue
i(δu−γ)

A(D0 → f) = Afe
iδf

A(D̄0 → f) = Af̄e
iδf̄

(2)

The benefit of this technique is that only tree-level
decays are utilised in the interference experiments [22].
These processes are very unlikely to be affected by new
physics, such as heavier particles and quantum loops.
They can therefore set a SM benchmark against which
any further measurements of γ may be compared.

This fundamental benefit of using tree-level bottom
decays to measure γ is also the reason for requiring
further experimentation outside the bottom system. A
new technique more open to new physics is required in
order to develop further the SM and hopefully to reveal
signs of physics beyond the SM through a difference in
branching fractions or unexpected measurements of CP
violation.

Another motivation for a new technique is measure-
ments of T violation. CPT is assumed to represent
an exact symmetry, meaning that if CP violation is
measured in a system, an equal violation of T should
also be present. Until 2012, no such violation had
been experimentally verified in the B system. However
the BaBar collaboration published a paper in which
they directly observed T symmetry violation in the
B system [8]. They used the method proposed by
Bernabéu, Mart́ınez-Vidal and Villanueva-Pérez’ [23],
which utilises the property of the Υ(4S) decay to
produce ERP-entangled neutral B mesons. These B
mesons are produced in an entangled state |i〉 as seen
in equation 3.

|i〉 =
1√
2

[
B0(t1)B̄0(t2)− B̄0(t1)B0(t2)

]
=

1√
2

[
B+(t1)B−(t2)−B−(t1)B+(t2)

] (3)

Here, the B meson states may be written in terms
of flavour eigenstates and CP eigenstates. Observa-
tions of the transitions between these states allows for
a measurement of T violation, and when performed
BaBar found a significant level of T violation.

2.2 CPT Violation in the Charm Sys-
tem

Although CP and T violation measurements have been
successful in the bottom system, very few experiments
have been able to detect the same in the charm system.
In fact, the first paper to confirm an observation of CP
violation within the charm system was published in
March 2019 by CERN [5].

To measure the CP violation, CERN used the de-
cays D0 → K−K+ and D0 → π−π+ present in a pp
collision. The flavour of the charm meson was inferred
using the decay products from D∗(2010)→ D0π+ and
the D0 producing decay B̄ → D0µ−ν̄µX, more specif-
ically the charge of the pion and the muon.

The CP violation measured for the K producing and
π producing decay was [−18.2±3.2(stat.)±0.9(syst.)]×
10−4 and [−9±8(stat.)±5(syst.)]×10−4 respectively,
thus confirming CP violation presence in the charm
system.

2.3 Production of Correlated Charm
Systems

To test CP violation in the charm system in a wider
range of decay branches, the generation of a D0D̄0 sys-
tem in an eigenstate of C is required. Quantum corre-
lated D0D̄0 mesons are usually generated from e+e−

collisions at the ψ(3770) threshold. However, to ensure
the D0D̄0 system is in a CP-even state, which makes
measurements of T violation significantly easier, a vir-
tual photon must be emitted during the decay [9]. This
significantly reduces the branching fraction.

Fortunately, following the confirmation of the fixed
quantum numbers JPC = 1++ of the exotic meson
Xc1(3872) [24], this may now be used as a new source
of quantum correlated D0D̄0 systems generated in an
eigenstate of C.

The decay of an Xc1(3872) follows the decay pattern
in equation 4, where m and n are integers [9].

Xc1(3872)→ D0D̄0 +mγ + nπ0 (4)

The CP even and CP odd eigenstates of the D0D̄0

system are shown in equations 5 and 6 respectively.∣∣D0D̄0
〉

+
∣∣D̄0D0

〉
√

2
(5)
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∣∣D0D̄0
〉
−
∣∣D̄0D0

〉
√

2
(6)

Another benefit of using the Xc1(3872) decay over
the ψ(3770) decay is that the exact configuration of
the D0D̄0 pair, when produced with an Xc1(3872), de-
pends on the other particles produced in the decay. To
ensure a pure CP eigenstate is generated, the condition
m = 0, n = 1 or m = 1, n = 0 must be met [25]. By
monitoring the secondary decay product, one can tag
the D0D̄0 system as having a CP eigenvalue of +1 or
−1.

However, LHCb was designed to detect charged par-
ticles with high precision. This results in neutral par-
ticles being very hard to reconstruct accurately. By
analysing reconstructable information extracted from
the Xc1(3872) decay through the utilisation of a neu-
ral network, it may be possible to determine the decay
product produced, and so the configuration of a D0D̄0

pair, without having to reconstruct these neutral par-
ticles.

2.4 Introduction to Neural Networks

A mutlilayered perceptron neural network (figure 3)
takes its inspiration from the human brain. It is made
of a set of interconnected nodes, and allows for com-
plex relationships between input variables to be anal-
ysed in such a way as to produce an activation of an
output node corresponding to a particular classifica-
tion [26]. This allows for a set of data to be passed
to the network, and through training allows the net-
work to understand which input variable values signify
a particular output.

Figure 3: A representation of a multilayer perceptron
neural network. Each circle corresponds to a single
node, and each line is a connection between two nodes.

The input layer contains as many nodes as input
variables. Each variable is passed to a single node,

which performs a calculation on the data and outputs
a value to the next layer. The calculation is dictated by
the activation function, whose shape is altered through
training by adjusting the bias and weighting of the
node.

This is mathematically governed by the matrix in
equations 7, 8 and 9, where m is the number of nodes
in the first layer and n the number of nodes in the
second layer. The input data passed to the first layer is
represented by a(0). Each of the nodes is also assigned
a bias, given by b. Through the connections between
each node in the first and second layer, given weightings
defined in W , the network may populate each layer
with a new calculated dataset given by a(l), where l is
the layer.

a(0) =


a

(0)
0

a
(0)
1
...

am(0)

 b =


b0
b1
...
bn

 (7)

W =


w0,0 w0,1 . . . w0,m

w1,0 w1,1 . . . w1,m

...
...

. . .
...

wn,0 wn,1 . . . wn,m

 (8)

a(l) = σ(Wa(l−1) + b) (9)

Training the network can occur through backwards
propagation of errors. Every weight is randomly gen-
erated and assigned when the network is created. The
first set of training data is then inputted into the net-
work and the output observed. Since training data is
labelled, a comparison between the predicted output
and the true result can be made through a loss func-
tion, which is then passed back through the network
and weights adjusted to minimise this loss function.
This process is done many times, with the hope that
after training, previously unseen data may pass into
the network and be correctly classified.

By inputting reconstructed data from LCHb or sim-
ulated events, it is hoped that a neural network will
be able to identify correctly if an Xc1(3872) decay pro-
duced a π0 or a γ without providing the network with
any data measured directly from these decay prod-
ucts. By training the network on a simulated sam-
ple set in which the D0D̄0 configuration is given, the
weights should be adjusted accordingly and be able to
discover relationships between input variables which
are too complex for a human to find.

3 Experimental Details

3.1 Simulation of Xc1(3872) decays

To generate data that the neural network can use to
train, RapidSim was used [27]. This is an open-source
software package which simplifies the simulation of
heavy-quark hadron decays, and is built on the ROOT

framework [28]. To ensure the focus of the network de-
velopment could fall on utilising tools to increase the
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accuracy of the network and not on simulating accu-
rate data, simple non-resonant direct prompt decays of
the Xc1(3872) were created.

Each event generated a set of variables which were
saved into a .root file. Using Python with the ROOT

framework, variables which were to be used for the neu-
ral network could then be extracted and saved as a
Numpy array for processing with the high level package
Keras [29] using TensorFlow [30].

Each .root file contained data relevant to a single
D0D̄0 configuration. These were merged to create the
Numpy array, but since there was an initial separation
it was trivial to label each event as having produced a
π0, γ or being background.

Of course, the aim of the simulation was to recre-
ate accurate data. In any detector, there is an issue
of background and detector resolution. Detector reso-
lution was at first simulated by adding a 1% gaussian
variation to the input data, but later was included di-
rectly within the simulation.

The background was generated through RapidSim,
and made use of D0D̄0 pairs produced through a
prompt decay. However, a sharp cut-off was imple-
mented at approximately 3.8GeV/c2 (figure 4). This
was done since the Xc1(3872) produced D0D̄0 mesons
fall into a narrow mass range, whereas the background
D0D̄0 mass was much more varied. It was thought that
this initial separation in invariant mass would render
identification of heavier backgroundD0D̄0 mesons triv-
ial to the network assuming the invariant mass was an
input variable, and thus a generation of heavy back-
ground mesons would not make the simulation any
more realistic.

Figure 4: The invariant mass of D0D̄0 mesons pro-
duced by background simulations. A non-physical cut
can clearly be seen at the high mass range.

Unfortunately, this was later found to be untrue;
some prompt produced signal decays, especially for γ-
producing signal, had mD0D̄0 greater than the applied
cut-off (figure 5) so this cut off was eventually extended
to cover the whole range of the prompt produced D0D̄0

masses (figure 6).
Another non-trivial simulation deficiency applicable

to the background data was a lack of final-state radi-
ation (FSR). FSR occurs when gluon or photon radia-

Figure 5: The invariant mass of D0D̄0 mesons pro-
duced by π0-producing and γ-producing decays of
Xc1(3872).

Figure 6: The invariant mass of D0D̄0 mesons pro-
duced by background simulations. The non-physical
cut has been removed and so the mass distribution
spans the entire relevant range of D0D̄0 mesons.

tion after the initial decay significantly alters the event
topology. Since the Xc1(3872) decays did include FSR,
it was found that the signal tended to have a longer tail
below the peak D0D̄0 mass, whereas the background
contained a much sharper cutoff, as shown in figure 7.
It was thought that this could have an effect on the
identification in the network, since the network could
learn that background had a shorter tail than signal
and so more accurately separate the signal and back-
ground. The FSR effect was eventually removed from
the signal to ensure that simulation effects would not
affect the physics (figure 8).

3.2 Evolution of the Neural Network

There were multiple stages involved in optimising the
neural network to provide maximal separation in decay
classification. By altering each configuration parame-
ter of the network, a quantatitive effect of the param-
eter on the network accuracy could be established.

8



Figure 7: The invariant mass of the D0 meson for a lim-
ited mass range for each decay classification. The tail
caused by FSR for the π0 and γ-producing decays can
be clearly seen to extend past that of the background.

Figure 8: The invariant mass of the D0 meson for a
limited mass range for each decay classification. The
lack of an FSR tail for all three decay types is clear.

3.2.1 Input Variables

One of the most fundamental configuration parameters
of a neural network is the inputs. Neural networks tend
to achieve higher accuracies when presented with sep-
arable data. Each input variable provides the network
with an additional dimension of separability. For ex-
ample, suppose a set of events were indistinguishable
when comparing the invariant mass of the produced
D0D̄0 mesons. Given another parameter, such as the
transverse momentum of the D0D̄0, which shows a dif-
ference in behaviour related to the CP eigenvalue of
the D0D̄0, the network may use this second dimen-
sion to make a clean cut between the datasets and so
accurately classify the decay paths.

Figure 9 demonstrates this graphically. Using a sin-
gle dimension, the data would be very hard to separate.
The introduction of an additional parameter with a
higher degree of separability allows for a much higher
classification accuracy.

Since there were 39 variables available in the sim-
ulation data towards the end of the project, it was
hoped that a number of these would have a high de-
gree of separation. By inputting all available variables,

Figure 9: A representation of data separability through
additional dimensions. Only by adding an additional
dimension can a clear cut be made, since the data dis-
tributions overlap in one dimension.

the weight associated with each one may be analysed
through a summation of the W matrix from equation 8
corresponsing to the particular input value. Through
this method, a set of highly separable variables may
be found without requiring an excessive load on the
network.

3.2.2 Network Configuration

The network configuration itself also affected the re-
sults. The network used was configurable in three main
aspects: the number of layers and nodes, the batch size
and the number of epochs.

The number of layers and nodes predominantly af-
fects the depth of the relationships the network is sensi-
tive to. In order to construct a simple method to refer
to specific network layer configurations, the notation
used lists out the size of each layer with a colon de-
limiter. Therefore, a network with an input layer with
eight nodes, two hidden layers with four and two nodes
respectively, and and one output node will be denoted
as a 8:4:2:1 network.

The batch size specifies how much data the network
should be given access to each training round, whereas
the number of epochs alters the number of times the
full dataset is passed to the network. A training round
is a single forwards calculation and backwards propaga-
tion of errors, and so by adjusting the two parameters
an optimal configuration may be found to ensure the
network is able to train quickly without introducing
errors in the gradient estimation.

3.2.3 Random Seed

When a network is created, as previously specified, the
weights and biases assigned to nodes and connections
between nodes are random. This initial random set
makes use of the TensorFlow and Numpy random num-
ber generators, which in turn rely on a random seed.
By manually setting the random seed, the reproducibil-
ity of the training of the network may be ensured.
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Through investigating the effect on the random seed,
an algorithm was designed to pick a selection of possi-
ble seeds from a pool and test each one, therefore allow-
ing for a constant random seed for all model training,
but one that will not adversely affect the accuracy of
the data.

3.2.4 Dropout and Normalisation

Two additional techniques were used alongside the neu-
ral network in an attempt to further increase the accu-
racy of the predictions and the speed of training. These
were dropout and normalisation.

Dropout randomly allows for individual input vari-
ables to be ignored for a particular training set, which
prevents overfitting of the network. Through the
training process, nodes can develop a co-dependency
which reduces the contributions from individual nodes.
Through the utilisation of dropout, no single node or
set of nodes can become too important, and thus the
network is able to train on a variety of variable rela-
tionships as opposed to becoming entirely dependent
on a single relationship.

Normalisation allows a network to train significantly
faster, and reduces the risk of the network getting
stuck in a local minima. Given a multilayered net-
work, the input variables statistical distribution will
change over several iterations as each layer performs
the standard weight and bias calculations. By apply-
ing batch normalisation, the mean of data passed to
layers will always be 0, and hence the network may
train on the same statistical distribution of data each
iteration. Furthermore, batch normalisation handles
the vanishing gradient problem. Given an activation
function which is constrained by horizontal asymtotes,
a non-normalised mean will require significant training
to set the bias of the node activation function close to
the mean. By normalising the mean initially to within
the range the activation function is most sensitive to,
the response of training to a small shift in the input
value is much more significant.

3.3 Method

Throughout training and testing, the same method was
used. The relevant data was extracted from the .root

files using Python, before being passed into a Neural
Network built with TensorFlow and Keras. The net-
work was allowed to train, before previously unseen
prediction data was passed in to evaluate the accuracy
of the network.

3.4 Network Evaluation Methods

A fundamental tool for analysing a network’s perfor-
mance is being able to determine how good the network
was at separating the data. The simplest evaluation
method is simply outputting the accuracy at the end of
a prediction. The accuracy is a measure of how many
correct predictions the network made. However this
metric should not be solely relied upon as it is heavily

dependent on the inputs. Given an uneven distribu-
tion of classification data, for example a larger num-
ber of background D0D̄0 mesons than D0D̄0 mesons
produced alongside a γ, the network is simply able to
classify everything as background and achieve a higher
accuracy than guessing. This would imply the network
is able to separate the input data, when in reality it is
just classifying everything as background.

To avoid this problem, there are a multitude of addi-
tional metrics one can use to analyse the performance
of a neural network. By observing the confidence of
each output node individually, easily separable decays
may be inferred since there will be a greater difference
in the confidence output. Furthermore, areas of weak-
ness for the network may be identified, such as areas in
which the network is equally confident in two results.

To build up a greater understanding of the ability of
the network to predict data accurately, a Receiver Op-
erating Characteristic (ROC) curve or Precision Recall
(PR) curve may be used.

ROC curves can be used to evaluate a network accu-
racy when there is an equal number of events in each
classification class. They plot the false positive rate,
or the number of events classified as a specific class
which are not from that class, against the true positive
rate, or the number of events classified in the correct
class compared to the whole set of events. The area
under the curve (AUC) is a quantifiable representation
of the network accuracy. However, ROC curves tend
to present an optimistic view of the network accuracy
given an imbalance in the event classification distribu-
tion [31].

PR curves handle this imbalance by plotting the pre-
cision against the recall instead. The precision is a ra-
tio of the number of true positives over the sum of true
and false positives, and thus represents a sample size
independent measure of how many predicted classes are
actually classified as that class. The recall is the ra-
tio of true positives over the sum of true positives and
false negatives, and instead represents the proportion
of positives that the network was able to classify.

Through a combination of these methods, the accu-
racy of the network can be evaluated at each stage of
its evolution to allow for conclusions to be drawn.

3.5 Network Classification Algorithm

Once a network has a given set of confidences from
output nodes, an algorithm must be employed to al-
low the network to decide which classification to label
the event as. A simple method of doing this is simply
to allow the network to classify the event as whatever
it was most confident about. However, given a set of
confidences with similar magnitudes, this will not nec-
essarily be the most accurate classification algorithm.

Instead, the precision and recall from a PR curve
may be used to set a threshold above which a network
is allowed to classify an event. The F-measure defines a
harmonic mean which can be used to find an optimum
balance between the precision and recall of a training
set. Generally, an F1 measure is used, which treats
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recall and precision as equals and returns a measure of
the accuracy of the network based on the average of
these two measures.

In this case, precision is thought to be significantly
more important than recall, since a small but precise
sample is preferred to a larger but less accurate sample.
Therefore, the F0.5 measure was used, which favours
precision. Equation 10 defines Fβ for any β ∈ R>0.

Fβ = (1 + β2)
precision · recall

β2 · precision+ recall
(10)

4 Network Evolution and Evalu-
ation

4.1 Random Seed

Since the initial network configuration is entirely de-
pendent on the random seed chosen for Numpy and
TensorFlow, which must be manually set to allow for
reproducibility of results, the effect this seed has on
the final accuracy of the network must be evaluated.
Training was completed using the 4-momenta of the
D0D̄0 system from π0-producing and γ-producing de-
cays, and the accuracy measured for a range of random
seeds, as seen in figure 10.

Figure 10: The effect of the initial random seed on
the final accuracy of a MLP Neural Network. A large
dependence can be seen.

Clearly, the initial random seed chosen can seriously
affect the final accuracy of a network. Accuracies tend
to fall either at the 50% level or between 80% and 90%
aside from a few seeds. Since the random seed defines
the initial configuration of the network, it also defines
the local topology of the loss function, which the net-
work attempts to minimise through training. There-
fore, some seeds will place the network a distance from
the true mimima, allowing the network to fall into a
local minima and stop training.

Although a more complex network should dissipate
some of this effect, since additional dimensions will lead
to a more complex topology, it should be noted that
most local minima are the same depth as global min-
ima. Therefore, by simply allowing a selection of seeds

Configuration Accuracy (%)
8 : 8 : 7 : 1 81.03

8 : 8 : 7 : 4 : 1 80.94
8 : 8 : 7 : 4 : 4 : 1 80.96

8 : 8 : 6 : 4 : 1 80.91
8 : 8 : 6 : 4 : 4 : 1 90.73
8 : 8 : 6 : 4 : 2 : 1 86.02
8 : 8 : 6 : 5 : 4 : 1 80.88
8 : 8 : 6 : 3 : 4 : 1 65.39
8 : 8 : 6 : 3 : 3 : 1 65.35

8 : 8 : 5 : 4 : 1 80.84
8 : 8 : 5 : 4 : 4 : 1 89.52

8 : 8 : 4 : 4 : 1 81.05
8 : 8 : 4 : 4 : 4 : 1 80.96

8 : 8 : 4 : 4 : 4 : 4 : 1 87.76

Table 1: The accuracy of the network when trained
with different network sizes. Values with very high
accuracy are highlighted.

to be tested and the one resulting in the highest accu-
racy selected before a training process starts will allow
for optimum accuracy to be achieved.

4.2 Network Configuration

Since the network configuration may be trivially
adapted to suit a particular problem, an analysis of
the size and shape of the network was carried out with
the intent of maximising the accuracy of the network.
The output and input layer shapes are decided by the
information in the data, and so only the hidden layers
need to be adjusted.

A grid search algorithm was written to enable a sim-
ple analysis of a set of hidden layer configurations.
Table 1 was generated detailing the configurations at-
tempted and the resulting accuracy for each one.

The most accurate network configuration was the 8
: 8 : 6 : 4 : 4 : 1 network. As with the random seed,
minor modifications of the network configuration are
able to affect the total accuracy significantly, and no
clear pattern is observed. This implies that the grid
search, as with the random seed, should be run before
each training to determine the best configuration for
the network given a particular set of input data.

In general, however, deeper networks tended to give
higher accuracies. This implies a level of complexity in
the data, since a deeper network is able to find more
abstracted relationships between input data.

Further configuration testing focused on the batch
size and the number of epochs. Through a similar test-
ing method of training the network on a set of different
configurations and recording the final accuracy, con-
clusions may be drawn about the dependence of the
network on batch size and number of epochs.

Smaller batch sizes tended to converge quicker, but
the network will take longer to train to the same ac-
curacies. This is as expected, since given a smaller
batch size, the algorithm which defines the backwards
propagation of errors will be executed more times per
epoch. This means that the gradient will make multiple
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smaller updates as opposed to a single large gradient
update when presented with a larger batch size, thus
allowing for a mimima to be reached faster. However,
since the network never trains on the complete training
dataset, it may never settle at the true minima and in-
stead just oscillate around the minima, thus there may
be a sacrifice of accuracy for quicker convergence. Fur-
thermore, smaller batch sizes take longer to run since
they require the computational power to execute mul-
tiple backwards propagation of errors when compared
to a gradient descent method with a single batch.

Large numbers of epochs are also considered to be
preferable when taking into account accuracy. The
longer a network trains for, the closer it can get to
a true minima. However, an increase in the number of
epochs leads to an increase in the time to train, and
additional epochs often provide a smaller increase in
accuracy since the gradient of the loss function reduces
as a network approaches the minima.

To take into account and optimise all network config-
uration parameters, a more advanced algorithm could
be written using an evolution technique. By starting
with a set of different network configurations, including
different hidden layer counts and sizes, different batch
sizes and different numbers of epochs, and testing each
one, the most accurate configuration may be taken and
evolved into a set of child network configurations, each
with only minor modifications to the network. This
process may continue until an accuracy threshold is
met. The advantages of this algorithm over the simple
grid search implemented is that networks with funda-
mentally lower initial accuracy are instantly discarded,
allowing for a much quicker optimisation of a network.

4.3 Input Variables

In designing a network to separate different decay prod-
ucts, arguably one of the most important parameters is
the variables exposed to the network. By manipulating
data from a reconstructed decay into different forms, or
selecting different variables to input to the network, a
variety of complex relationships between different vari-
ables may be indirectly deduced in the hidden layers
of the network.

4.3.1 Invariant Mass

Initially the invariant mass of the D0D̄0 pair, mD0D̄0 ,
was calculated from the 4-momenta of each meson and
inputted through a single node. The invariant mass is
calculated using equation 11.

m2
D0D̄0 = E2

D0D̄0 − p2
D0D̄0

ED0D̄0 = ED0 + ED̄0

pD0D̄0 = pD0 + pD̄0

(11)

Figure 11 demonstrates the invariant mass distribu-
tion for the set of events. There is a small overlap
present, but some of the signal events should be clas-
sified correctly by implementing a cut in the overlap.
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Figure 11: The invariant mass distribution of the
D0D̄0 meson pair produced through π0-producing, γ-
producing and background decays.

For this reason, a sigmoid activation function is used
as this can effectively simulate a cut. The background
spans most of the mass distribution, so it is expected
that this will be very difficult to separate, especially
from the γ-producing decay.

Figure 12: The invariant mass distribution of theD0D̄0

meson pair as classified by Keras as having been pro-
duced through π0-producing, γ-producing and back-
ground decays.

From the predicted mass distributions in figure 12,
it appears as though there have been a large num-
ber of misclassifications. The low mass tail of the
π0-producing decay is almost fully misclassified as a
mixture of π0-producing and γ-producing decays and
background signal. This can be explained by consid-
ering that, since the network only has access to the
invariant mass, and the D0D̄0 meson mass from γ-
producing decays and background signal span almost
the entire mass range (albeit to a smaller degree at the
low mass range), just through a mass cut very little
classification should be possible.

The high mass tail of γ-producing decays above the
mass cut implemented in the background is almost per-
fectly classified. This is unsurprising since the only
Xc1(3872) decay which is able produce a D0D̄0 mass
above this threshold will also produce a γ. The net-
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work has simply made a mass cut and classified any-
thing above this mass as a γ-producing decay.

Figure 13: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
π0-producing decays. The data has been grouped by
the true classification of the event.

Figure 14: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
γ-producing decays. The data has been grouped by the
true classification of the event.

The mass distribution of π0-producing decays in fig-
ure 13 asserts that the separation of π0-producing de-
cays is reasonably difficult using only invariant mass.
A significant number of misclassifications can be seen,
and surprisingly these span the whole mass range al-
though are less dominant at higher masses. The
peak in the misclassifications corresponds to the π0-
producing decay mass, which implies that a soft mass
cut has been made, in which the network is not sim-
ply classifying anything below a certain mass as a π0-
producing decay. This is because a significant propor-
tion of the low mass signal is made of a mixture of
decay types, and hence a hard mass cut will lead to a
large proportion of misclassfications.

Misclassifications are also prevalent in figures 14 and
15. Gamma classifications appear to be very difficult to
make, since a significant proportion of the classified γ-
producing decays are actually background. Similarly,
γ-producing decays are seen in the background classi-
fications, thus implying the two look very similar.

Figure 15: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
background simulation. The data has been grouped by
the true classification of the event.

A surprising result is that of the misclassifications of
π0-producing decays as background. It is likely that
there are a number of π0-producing decays which have
an invariant mass closer to that of the average back-
ground as opposed to within the standard range for
the π0-producing decay, thus leading the network to
classify them as background.

Figure 16: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced by π0-producing decays. The data has been
grouped by the output node, since each node refers
to a different classification class.

This theory is supported by the confidence of the
π0-producing decay classifications in figure 16. A large
output confidence range demonstrates there is a multi-
tude of events which look very similar, as the network
is unable to distinguish between them with any confi-
dence. There is a high confidence peak of π0-producing
decays which comes from the low mass tail of the π0-
producing decays, and is coupled with low confidence
classifications of γ-producing decays and background.
However, there is a peak in the π0-producing decay
confidence at 0, coupled with a confidence peak in both
γ-producing decays and background, hence implying
that a set of π0-producing decay events have masses
closer to that of the γ-producing decay D0D̄0 or back-
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Figure 17: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced by γ-producing decays. The data has been
grouped by the output node, since each node refers
to a different classification class.

Figure 18: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced in simulated background data. The data has
been grouped by the output node, since each node
refers to a different classification class.

ground, which in turn look identical to one another.
It is thus extremely likely that there is a small set of
π0-producing decay events in which the D0D̄0 mass is
significantly higher than would be expected for a π0-
producing decay. These high mass D0D̄0 mesons will
be referred to as the extreme mass π0-producing de-
cays.

Very similar results are seen in figures 17 and 18,
in which a low confidence π0-producing decay peak is
seen and coupled with two peaks in background and γ-
producing decays, which must look very similar since
the network is unable to draw confident conclusions.
These π0-producing classifications are considered to be
the average mass decay products, since the network is
able to classify them to a certain degree. Both confi-
dences also contain a very high confidence peak corre-
sponding to π0-producing deacys, which is due to the
extreme mass π0-producing decays.

In general, figure 19 suggests the network is able to
learn and classify at a rate better than guessing us-

Figure 19: The ROC curve for a neural network having
been trained on only the invariant mass of the D0D̄0

pair.

ing just invariant mass. Due to the relatively small
number of π0-producing decays with an extreme mass,
there is a small increase in the gradient at high false
positive rate. This is because when the network allows
for a high false positive rate, the few extreme mass π0-
producing decays are then classified as π0-producing
decays.

Additionally, inputting the 4-momenta alongside the
mass had no effect on the overall accuracy of the net-
work. This is due to the network’s ability to discover
relationships itself, and since the invariant mass is a
manipulation of the 4-momenta, there are no benefits
to implementing both. It is hoped that, by adding
additional variables unrelated to the invariant mass,
the π0-producing decays will be separated with much
higher accuracy since the network will have additional
dimension in which to identify the extreme mass π0-
producing decays.

4.3.2 Additional input variables

Through the reconstructed decays, both theD0 and D̄0

mesons expose thirteen different variables that may be
utilised in the network. These are

• Energy E

• Transverse Energy Et

• Flight Distance d

• Mass m

• Mass Squared m2

• Transverse Mass mt

• Momentum p

• x-momentum px

• y-momentum py

• z-momentum pz

• Pseudo-rapidity
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• Azimuthal angle

• Rapidity

Since charged particles can often be reconstructed
at LHCb, additional variables are exposed from addi-
tional charged decay products. The impact parameter
and minimum impact parameter are collected from the
final decay products of the system, namely K+, K−,
π+ and π−. Finally, the angle between the K− and D̄0

in the D0 rest frame, the angle between the K+ and
D0 in the D̄0 rest frame, the angle between the D0

and D̄0 in the D0 and D̄0 rest frame and the D0D̄0

invariant mass were also inputted.

Figure 20 shows the predicted mass distribution as
opposed to the the true mass distribution in figure 11.
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Figure 20: The invariant mass distribution of theD0D̄0

meson pair as classified by Keras as having been pro-
duced through π0-producing, γ-producing and back-
ground decays.

The most noticeable difference between the predicted
mass distributions in figures 12 and 20 is that the π0-
producing decay appears to be classified to a much
greater accuracy at the peak. It also appears as
though the network is misclassifying background and
γ-producing decays as π0-producing decays, since π0-
producing decays are predicted over a much larger mass
range than they should be. The addition of new vari-
ables other than the invariant mass has clearly allowed
the network to better separate π0-producing decays at
low masses.

Through creating a mass distribution plot for a spe-
cific set of classified events, the reason for the misclassi-
fications in γ-producing decays and background should
be derivable. These are seen in figures 21, 22 and 23.
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Figure 21: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
π0-producing decays. The data has been grouped by
the true classification of the event.
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Figure 22: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
γ-producing decays. The data has been grouped by the
true classification of the event.
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Figure 23: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
background simulation. The data has been grouped by
the true classification of the event.

Figure 21 clearly shows that the majority of π0-
producing classified decays are from π0-producing de-
cays as expected. This reiterates that the network is
highly dependent on the invariant mass for the sep-
aration of π0-producing decays from the γ-producing
decays and background, although the additional vari-
ables have enabled the network to refine this classifi-
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cation to a much higher degree. The peak of misclas-
sifications is still observed, which again implies that
the invariant mass is still extremely important; since
most π0-producing decays are found at the low mass,
the network is overpredicting the number of low mass
π0-producing decays.

Figures 22 and 23 show that the further separation
of γ-producing decays and background is significantly
more difficult, despite the additional variables. It ap-
pears as though the network is unable to distinguish
between γ-producing decays and background signal,
since both classifications consist of an approximately
equal distribution of true γ-producing decay classifica-
tions and background. The background cut is clearly
visible in the classifications, and so must be taken into
consideration when evaluating the network accuracy.

Fortunately, the peak of π0-producing decays in
the background classification appears to have been re-
duced. This is again due to the additional dimensions
of separation available to the network with the intro-
duction of the additional variables; in fact this shows
that almost every π0-producing decay can now be clas-
sified as such. The extreme mass π0-producing decays
are no longer a source of inaccuracy for the network,
which is a large improvement on only using the invari-
ant mass.

Further analysis is possible through the output node
confidence for each classification class. These are
shown in figures 24, 25 and 26.
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Figure 24: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced by π0-producing decays. The data has been
grouped by the output node, since each node refers
to a different classification class.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

12

14

No
rm

al
ise

d 
Fr

eq
ue

nc
y

Confidence: 
background

0

Figure 25: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced by γ-producing decays. The data has been
grouped by the output node, since each node refers
to a different classification class.
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Figure 26: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced in simulated background data. The data has
been grouped by the output node, since each node
refers to a different classification class.

The π0-producing decay confidence is as expected,
and has significantly improved. The network is able
to classify a π-producing decay with a large separation
in confidence from an incorrect classification. The two
peaks in confidence tail into one another between the
peaks, thus leave space for improvement since a sharper
cut in classification would be better. This is a huge im-
provement from figure 16, and shows that the network
is almost entirely able to separate π0-producing de-
cays from the γ-producing decays and the simulated
background with confidence. The π0-producing de-
cays which were classified as π0-producing decays with
0 confidence have been classified confidently as π0-
producing decays now, hence this confirms that the
extreme mass π0-producing decays were able to be clas-
sified based on additional variables.

Unfortunately, the same improvements are not seen
in the γ-producing or background decay classifications.
Interestingly, the most extreme confidences correspond
to π0-producing decays. Reassuringly most of these fall
into the low confidence category, implying that the net-
work distinguishes them from the γ-producing or back-
ground decays. However, there is a relatively smaller
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peak at the highest confidence level, implying that a
significant number of the γ-producing and background
decays look like π0-producing decays. This is likely
to do with the overdependence on the invariant mass.
Since the network will have made a mass cut by which
is relies heavily on to classify π0-producing decays, any
γ-producing or background decays with a mass falling
at the extremity of the cut will potentially be classified
confidently as a π0-producing decay event.

The double peak classification of background and
γ-producing decays is very interesting. The peak at
about 0.2 corresponds to the same peak in the π0-
producing decay confidence in figure 24, and so is likely
to have been caused by the γ or background producing
decays which the network perceives to be π0-producing.
By reducing the dependence on the mass, it is possible
that both the incorrect high confidence π0-producing
decay classification and the peaks at 0.2 can be re-
moved.

The second background and γ-producing classifica-
tion peak at a confidence of approximately 0.45 is more
realistic. Since both classifications are of similar con-
fidence, this supports the idea that γ-producing and
background decays are extremely difficult to classify.
This is further supported by the fact that the back-
ground decay is less confidently classified than the
γ-producing decays in both the background and γ-
producing decays. This implies that the network is
observing both particles to be almost identical, and
thus uses the same relationships to classify both.

Since the ratio of background to signal was equal,
a ROC curve can quantify the accuracy of the net-
work. Figure 27 shows this, and supports the idea that
π0-producing decay classifications are much easier to
separate than the γ-producing and background decays.
It also indicates that γ-producing and background de-
cay classifications are not completely random, thus the
network must have some ability to separate some γ-
producing decays from background decays. The mass
cut in the background will significantly affect this, since
it allows for a large proportion of the γ-producing de-
cays to be perfectly separated due to non-physical rea-
sons.

Since the background will be discarded, it is less im-
portant to classify this accurately relative to accurate
classifications of the γ-producing decays. Therefore, it
may be possible to require a lower false positive rate
of around 0.3 for a γ-producing decay classification to
result in a smaller but cleaner γ-producing decay sig-
nal if the network is still unable to separate these de-
cays. However, since the ROC curve is very similar for
γ-producing decays and background signal, and both
have a positive gradient throughout the false positive
range as opposed to the π0-producing decay which lev-
els off, the accuracy improvement would be limited.

Rank Variable Importance (10−1)
1 mD0D̄0 6.38
2 mD0 4.33
3 mD̄0 4.21
4 θD0D̄0 3.31
5 βD0 2.48
6 βD̄0 2.17
7 ETD̄0 1.36
8 mTD̄0 1.28
9 pTD0 1.28
10 pzD̄0 1.27

Table 2: The top ten variables the network uses to
make classifications.
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Figure 27: The ROC curve for a neural network having
been trained on 39 variables extracted from the D0D̄0

pair and additional decay products.

The relative importance of each variable as seen by
the network was extracted in order to determine how
dependent the network truly is on mass. Table 2 was
generated, with the most important variables listed at
the top.

Indeed, the top three most important variables in
classification are the combined invariant mass mD0D̄0

and the individual masses mD0
and mD0D̄0

. By re-
ducing the background cut, and reducing the effects of
FSR, the dependence on the masses should be reduced.

The angle θD0D̄0 is also considered to be an impor-
tant variable to the network. However, this variable
should always be 180◦, and so indicates a simulation
effect as opposed to a physical effect.

4.4 Background Simulation

Since the sharp cut in the background sample has been
shown to affect the final accuracy of the network, it is
important to reduce this effect by removing the cut.
Alongside this, the effects of FSR have been removed
from the signals, since the generation of FSR for the
background sample was considered to be significantly
more difficult. Figure 6 demonstrates the new back-
ground, in which the cut has been removed, and fig-
ures 7 and 8 demonstrate the mass distribution of the
frequency before and after the FSR removal. The true
invariant mass distribution of the input data sets can
be seen in figure 28.
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Figure 28: The invariant mass distribution of the
D0D̄0 meson pair produced through π0-producing, γ-
producing and background decays. The removal of the
background cut can be seen.
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Figure 29: The invariant mass distribution of theD0D̄0

meson pair as classified by Keras as having been pro-
duced through π0-producing, γ-producing and back-
ground decays.

Figure 29, the predicted mass distribution of the
data set, seems to show again a large misclassifica-
tion between γ-producing and background decays. The
network appears to favour classifying decays as γ-
producing. The π0-producing decay separation ap-
pears to have been reasonably successful, but nearly
everything else has been classified as γ-producing de-
cay aside from at high mass. It is likely that this is due
to the reduction in signal at these high masses; almost
everything at the high mass extremity is background
and hence the network is very confident an event with
high mass can be classifed as background.
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Figure 30: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
π0-producing decays by Keras. The data has been
grouped by the true classification of the event.
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Figure 31: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
γ-producing decays. The data has been grouped by the
true classification of the event.

3.5 3.6 3.7 3.8 3.9 4.0
Mass (GeV/c2)

0

5

10

15

20

25

No
rm

al
ise

d 
Fr

eq
ue

nc
y

mD0D0 for the Background
background

0

Figure 32: The invariant mass distribution of theD0D̄0

meson pair classified as having been produced through
background simulation. The data has been grouped by
the true classification of the event.

Figure 30 supports the successful separation of π0-
producing decays from the γ-producing and back-
ground decays. Only a very small peak of misclassi-
fications can be seen, which is again a large improve-
ment when compared to figures 13 and 21. There is
no longer a high mass misclassification; instead the
range in which π0-producing decays are classified is
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very small. Similar accuracies are observed in the back-
ground classification in figure 32. Although a few mis-
classifications are observed, Keras was able to identify
background with reasonable accuracy. However, fig-
ure 31 shows a different story for the γ-producing de-
cay classifications. Keras has incorrectly classified a
lot of background decays as γ-producing decays. This
is likely since the background and γ-producing decay
samples have been shown to be difficult to distinguish.

Since background and γ-producing decays look so
similar to the network, despite the additional variables,
the network classifies everything as a γ-producing de-
cay unless there is a distinguishing feature separating
the background and γ-producing decays or the back-
ground is outside the main D0D̄0 mass range for γ-
producing decays. This explains the small peak in
background classifications in the predicted invariant
mass distribution in figure 29 at high mass, and also
the small π0-producing decay peak in the background
classifications in 32. The latter peak is likely to be a
small subset of π0-producing decays which vary in some
way to the majority of the π0-producing decays, thus
letting the network believe these could be background.
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Figure 33: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced by π0-producing decays. The data has been
grouped by the output node, since each node refers
to a different classification class.
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Figure 34: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced by γ-producing decays. The data has been
grouped by the output node, since each node refers
to a different classification class.
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Figure 35: The confidence of the Keras output nodes
when presented with data from the D0D̄0 mesons pro-
duced in simulated background data. The data has
been grouped by the output node, since each node
refers to a different classification class.

The confidence plots show that the network has sig-
nificantly improved. Figure 33 shows that the network
is very confidently able to classify π0-producing de-
cays. The confidence plots of γ-producing and back-
ground decays in figures 34 and 35 respectively show
the confidence outputs due to π0-producing decay mis-
classifications has been entirely reduced. However, the
confidence of a classification being a γ-producing or
background decay are still very close, although sepa-
rated very well. The confidence peaks are also in the
same order; the network is always more confident a
given event is a γ-producing decay as opposed to a
background decay. This seems to suggest that it is
impossible to distinguish between the background and
γ-producing decay samples, since Keras responds iden-
tically to both types of decay. This also explains why
the background classification sample is much cleaner
than the γ-produciing decay classification sample, since
a particle must have a distinguishing feature in order
to be classified as background. In fact, the subset of
background signal which Keras was able to classify ac-
curately comes from the high confidence tail in figure
35 which extends beyond the γ-producing decay confi-
dence peak.
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Figure 36: The PR curve for a neural network having
been trained on 39 variables extracted from the D0D̄0

pair and additional decay products. The cut in the
background has been removed, and FSR is no longer
simulated in the π0 and γ producing samples.
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The PR curve supports all conclusions already drawn
from this data. When the network has low recall, so
classifies very few background events as background,
it is able to identify background decays with a very
high accuracy. However at a higher recall this is no
longer possible, thus indicating that the accuracy of
the background is due to the network only classifying
something as background when it is very confident.

The π-producing decays are very precise for all re-
calls, thus supports the conclusion that π0-producing
decays are very separable.

5 Conclusion

The network has been able to separate π0-producing
decays from the γ-producing decays and the back-
ground signal with a very high accuracy. This is due
to the inclusion of the invariant mass, but also a few
transverse variables which depend on the mass but
are affected by boosts into different frames of refer-
ence. However, the γ-producing decays and the back-
ground are seen by the network to be almost identical,
and hence a relatively low degree of separation can be
achieved between these classes. This is thought to be
due to the network dependence on invariant mass.

6 Further Work

Further work to improve the classification ability of the
neural network when attempting to tag configurations
of D0D̄0 mesons generated in Xc1(3872) decays should
predominantly focus on reducing the network reliance
on the invariant mass, since this is the predominant
method of classification. Furthermore, by reducing the
number of input variables by removing those which
the network does not use, a smaller network may be
achieved to allow training to occur significantly faster.
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